Perl Data Language (PDL)

Some examples
Contents

• what exists outside perl: matlab / octave, c/c++, numpy, R, mathematica / maxima
• benefits of perl as basis compared to other languages (regexp, I/O, data cleaning, flexio)
• great performance
• known uses and library stacks based on PDL (taken from http://pdl.perl.org/?page=users)
• a solution of running this in a multiple processor environment
• some examples of what Spoorgloren uses it for
What is PDL

- Perl Data Language extends perl (assumed known)
- In PDL arrays of numerical data are stored in binary form
- The usual perl operators are overloaded, and additional ones are added
- Calculations are at binary speed, with multiple-CPU support
- Numerical libraries are available (FFT, lapack)
short example PDL code

• perldl> $a=pdl ([0,2,3],[4,5,6])
• perldl> $a +=2
• perldl> print $a
 • [
 • [2 4 5]
 • [6 7 8]
 •]
PDL features

- Several matrix data types (int, float, double)
- Fast slicing, transposing, etc without data replication
- Easy re-dimensioning (3x2 matrix -> 6x1)
- Most numerical libraries are there (e.g. matrix operations)
- Use of perl (hashes !) to generate indices
- Good introduction at:
 http://perltv.org/v/introduction-to-the-perl-data-language
Other solutions

- Scientists once used FORTRAN and Pascal
- c/c++ took over, but inconvenient I/O
- matlab / octave, R: very powerful, lame I/O
- mathematica / maxima: symbolic manipulation
- python+numpy: main alternative to PDL
Benefits of perl basis w.r.t. other solutions

• For unclean data perl is great, and fast: regexp, I/O
• data cleaning, hashing to coded numbers: great in perl
• PDL had own binary file handling flexio
Performance

- Text handling in perl is fast
- PDL performance also good:
- http://www.freesoftwaremagazine.com/articles/cool_fractals_with_perl_pdl_a_benchmark
Known uses

- known uses and library stacks based on PDL (taken from http://pdl.perl.org/?page=users)
- UN-ECE's EMEP program monitors long-range air pollutants such as acid rain and ozone, over the whole of Europe
Known uses II

• **Astronomy and Astrophysics**
 – Artificial vision of magnetic fields on the Sun
 – High-speed galactic winds
 – Identifying galaxies from telescope images

• **Meteorology and Terrestrial Monitoring**
 – Measuring European air pollution for the U.N.
 – Real-time weather and forest fire detection from space

• **Medical imaging**
 – Brain scan visualization
Solution in multi-processor environment

• At Spoorgloren, data is usually delivered in daily of monthly updates
• Use file system and combination of ASCII and binary files to store update chunks
• Use “make -j” to start (re-) processing
• This is a simple solution for running in a multiple processor environment, not yet as multi computer (but not yet needed)
Examples of Spoorgloren’s usage

• passenger forecasts
• ECO driving
• passenger streams at stations
• Nightly energy usage reduction
Passenger forecasts

• Per-train level
• Including change in schedule

• Hoogenraad, J.H., De Vos, A.F., De Vries, J.J., 2013. NS-project AURORA voorspelt voor elke trein het aantal reizigers STAtOR 14 (3-4), 28-31
Evaluation ECO driving (EZR)
Pedestrian throughput in stations
Summary of our PDL usage

- Fast calculations in perl
- Cleaning and coupling of input data
- Usually batch oriented, data output (even though PDL has great graphics)
- For Dutch Rail